0 JBC
↳1 JBC2FIG (⇒)
↳2 JBCTerminationGraph
↳3 FIGtoITRSProof (⇒)
↳4 IDP
↳5 IDPNonInfProof (⇒)
↳6 IDP
↳7 IDependencyGraphProof (⇔)
↳8 TRUE
/**
* Example taken from "A Term Rewriting Approach to the Automated Termination
* Analysis of Imperative Programs" (http://www.cs.unm.edu/~spf/papers/2009-02.pdf)
* and converted to Java.
*/
public class PastaB8 {
public static void main(String[] args) {
Random.args = args;
int x = Random.random();
if (x > 0) {
while (x != 0) {
if (x % 2 == 0) {
x = x/2;
} else {
x--;
}
}
}
}
}
public class Random {
static String[] args;
static int index = 0;
public static int random() {
String string = args[index];
index++;
return string.length();
}
}
Generated 19 rules for P and 3 rules for R.
Combined rules. Obtained 2 rules for P and 0 rules for R.
Filtered ground terms:
332_0_main_EQ(x1, x2, x3) → 332_0_main_EQ(x2, x3)
Cond_332_0_main_EQ1(x1, x2, x3, x4) → Cond_332_0_main_EQ1(x1, x3, x4)
Cond_332_0_main_EQ(x1, x2, x3, x4) → Cond_332_0_main_EQ(x1, x3, x4)
Filtered duplicate args:
332_0_main_EQ(x1, x2) → 332_0_main_EQ(x2)
Cond_332_0_main_EQ1(x1, x2, x3) → Cond_332_0_main_EQ1(x1, x3)
Cond_332_0_main_EQ(x1, x2, x3) → Cond_332_0_main_EQ(x1, x3)
Combined rules. Obtained 2 rules for P and 0 rules for R.
Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer
(0) -> (1), if ((x0[0] > 0 && !(x0[0] % 2 = 0) →* TRUE)∧(x0[0] →* x0[1]))
(1) -> (0), if ((x0[1] + -1 →* x0[0]))
(1) -> (2), if ((x0[1] + -1 →* x0[2]))
(2) -> (3), if ((x0[2] >= 1 && !(x0[2] = 0) && 0 = x0[2] % 2 →* TRUE)∧(x0[2] →* x0[3]))
(3) -> (0), if ((x0[3] / 2 →* x0[0]))
(3) -> (2), if ((x0[3] / 2 →* x0[2]))
(1) (&&(>(x0[0], 0), !(=(%(x0[0], 2), 0)))=TRUE∧x0[0]=x0[1] ⇒ 332_0_MAIN_EQ(x0[0])≥NonInfC∧332_0_MAIN_EQ(x0[0])≥COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])∧(UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥))
(2) (>(x0[0], 0)=TRUE∧<(%(x0[0], 2), 0)=TRUE ⇒ 332_0_MAIN_EQ(x0[0])≥NonInfC∧332_0_MAIN_EQ(x0[0])≥COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])∧(UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥))
(3) (>(x0[0], 0)=TRUE∧>(%(x0[0], 2), 0)=TRUE ⇒ 332_0_MAIN_EQ(x0[0])≥NonInfC∧332_0_MAIN_EQ(x0[0])≥COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])∧(UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥))
(4) (x0[0] + [-1] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(5) (x0[0] + [-1] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(6) (x0[0] + [-1] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(7) (x0[0] + [-1] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(8) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(9) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥)∧[(-1)bni_16 + (-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(10) (x0[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(11) (x0[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(12) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(13) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])), ≥)∧[(-1)Bound*bni_16] + [bni_16]x0[0] ≥ 0∧[(-1)bso_17] ≥ 0)
(14) (&&(>(x0[0], 0), !(=(%(x0[0], 2), 0)))=TRUE∧x0[0]=x0[1]∧+(x0[1], -1)=x0[0]1 ⇒ COND_332_0_MAIN_EQ(TRUE, x0[1])≥NonInfC∧COND_332_0_MAIN_EQ(TRUE, x0[1])≥332_0_MAIN_EQ(+(x0[1], -1))∧(UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥))
(15) (>(x0[0], 0)=TRUE∧<(%(x0[0], 2), 0)=TRUE ⇒ COND_332_0_MAIN_EQ(TRUE, x0[0])≥NonInfC∧COND_332_0_MAIN_EQ(TRUE, x0[0])≥332_0_MAIN_EQ(+(x0[0], -1))∧(UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥))
(16) (>(x0[0], 0)=TRUE∧>(%(x0[0], 2), 0)=TRUE ⇒ COND_332_0_MAIN_EQ(TRUE, x0[0])≥NonInfC∧COND_332_0_MAIN_EQ(TRUE, x0[0])≥332_0_MAIN_EQ(+(x0[0], -1))∧(UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥))
(17) (x0[0] + [-1] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(18) (x0[0] + [-1] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(19) (x0[0] + [-1] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(20) (x0[0] + [-1] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(21) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(22) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(23) (x0[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(24) (x0[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(25) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(26) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(27) (&&(>(x0[0], 0), !(=(%(x0[0], 2), 0)))=TRUE∧x0[0]=x0[1]∧+(x0[1], -1)=x0[2] ⇒ COND_332_0_MAIN_EQ(TRUE, x0[1])≥NonInfC∧COND_332_0_MAIN_EQ(TRUE, x0[1])≥332_0_MAIN_EQ(+(x0[1], -1))∧(UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥))
(28) (>(x0[0], 0)=TRUE∧<(%(x0[0], 2), 0)=TRUE ⇒ COND_332_0_MAIN_EQ(TRUE, x0[0])≥NonInfC∧COND_332_0_MAIN_EQ(TRUE, x0[0])≥332_0_MAIN_EQ(+(x0[0], -1))∧(UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥))
(29) (>(x0[0], 0)=TRUE∧>(%(x0[0], 2), 0)=TRUE ⇒ COND_332_0_MAIN_EQ(TRUE, x0[0])≥NonInfC∧COND_332_0_MAIN_EQ(TRUE, x0[0])≥332_0_MAIN_EQ(+(x0[0], -1))∧(UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥))
(30) (x0[0] + [-1] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(31) (x0[0] + [-1] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(32) (x0[0] + [-1] ≥ 0∧[-1] + [-1]min{[2], [-2]} ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(33) (x0[0] + [-1] ≥ 0∧max{[2], [-2]} + [-1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(34) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(35) (x0[0] + [-1] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)bni_18 + (-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(36) (x0[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(37) (x0[0] ≥ 0∧[4] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(38) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(39) (x0[0] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(+(x0[1], -1))), ≥)∧[(-1)Bound*bni_18] + [bni_18]x0[0] ≥ 0∧[1 + (-1)bso_19] ≥ 0)
(40) (&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2)))=TRUE∧x0[2]=x0[3] ⇒ 332_0_MAIN_EQ(x0[2])≥NonInfC∧332_0_MAIN_EQ(x0[2])≥COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])∧(UIncreasing(COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])), ≥))
(41) (>=(x0[2], 1)=TRUE∧>=(0, %(x0[2], 2))=TRUE∧<=(0, %(x0[2], 2))=TRUE∧<(x0[2], 0)=TRUE ⇒ 332_0_MAIN_EQ(x0[2])≥NonInfC∧332_0_MAIN_EQ(x0[2])≥COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])∧(UIncreasing(COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])), ≥))
(42) (>=(x0[2], 1)=TRUE∧>=(0, %(x0[2], 2))=TRUE∧<=(0, %(x0[2], 2))=TRUE∧>(x0[2], 0)=TRUE ⇒ 332_0_MAIN_EQ(x0[2])≥NonInfC∧332_0_MAIN_EQ(x0[2])≥COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])∧(UIncreasing(COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])), ≥))
(43) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(44) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(45) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(46) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(47) (x0[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)bni_20 + (-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(48) (x0[2] ≥ 0∧x0[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(49) (x0[2] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0 ⇒ (UIncreasing(COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])), ≥)∧[(-1)Bound*bni_20] + [bni_20]x0[2] ≥ 0∧[(-1)bso_21] ≥ 0)
(50) (&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2)))=TRUE∧x0[2]=x0[3] ⇒ COND_332_0_MAIN_EQ1(TRUE, x0[3])≥NonInfC∧COND_332_0_MAIN_EQ1(TRUE, x0[3])≥332_0_MAIN_EQ(/(x0[3], 2))∧(UIncreasing(332_0_MAIN_EQ(/(x0[3], 2))), ≥))
(51) (>=(x0[2], 1)=TRUE∧>=(0, %(x0[2], 2))=TRUE∧<=(0, %(x0[2], 2))=TRUE∧<(x0[2], 0)=TRUE ⇒ COND_332_0_MAIN_EQ1(TRUE, x0[2])≥NonInfC∧COND_332_0_MAIN_EQ1(TRUE, x0[2])≥332_0_MAIN_EQ(/(x0[2], 2))∧(UIncreasing(332_0_MAIN_EQ(/(x0[3], 2))), ≥))
(52) (>=(x0[2], 1)=TRUE∧>=(0, %(x0[2], 2))=TRUE∧<=(0, %(x0[2], 2))=TRUE∧>(x0[2], 0)=TRUE ⇒ COND_332_0_MAIN_EQ1(TRUE, x0[2])≥NonInfC∧COND_332_0_MAIN_EQ1(TRUE, x0[2])≥332_0_MAIN_EQ(/(x0[2], 2))∧(UIncreasing(332_0_MAIN_EQ(/(x0[3], 2))), ≥))
(53) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[1 + (-1)bso_26] + x0[2] + [-1]max{x0[2], [-1]x0[2]} ≥ 0)
(54) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[1 + (-1)bso_26] + x0[2] + [-1]max{x0[2], [-1]x0[2]} ≥ 0)
(55) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧[-1] + [-1]x0[2] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[1 + (-1)bso_26] + x0[2] + [-1]max{x0[2], [-1]x0[2]} ≥ 0)
(56) (x0[2] + [-1] ≥ 0∧[-1]min{[2], [-2]} ≥ 0∧max{[2], [-2]} ≥ 0∧x0[2] + [-1] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[1 + (-1)bso_26] + x0[2] + [-1]max{x0[2], [-1]x0[2]} ≥ 0)
(57) (x0[2] + [-1] ≥ 0∧x0[2] + [-1] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2]x0[2] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)bni_22 + (-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[1 + (-1)bso_26] ≥ 0)
(58) (x0[2] ≥ 0∧x0[2] ≥ 0∧[4] ≥ 0∧[2] ≥ 0∧[2] ≥ 0∧[2] + [2]x0[2] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[1 + (-1)bso_26] ≥ 0)
(59) (x0[2] ≥ 0∧x0[2] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] ≥ 0∧[1] + x0[2] ≥ 0 ⇒ (UIncreasing(332_0_MAIN_EQ(/(x0[3], 2))), ≥)∧[(-1)Bound*bni_22] + [bni_22]x0[2] ≥ 0∧[1 + (-1)bso_26] ≥ 0)
POL(TRUE) = [2]
POL(FALSE) = [1]
POL(332_0_MAIN_EQ(x1)) = [-1] + x1
POL(COND_332_0_MAIN_EQ(x1, x2)) = [-1] + x2
POL(&&(x1, x2)) = [-1]
POL(>(x1, x2)) = [-1]
POL(0) = 0
POL(!(x1)) = [-1]
POL(=(x1, x2)) = [-1]
POL(2) = [2]
POL(+(x1, x2)) = x1 + x2
POL(-1) = [-1]
POL(COND_332_0_MAIN_EQ1(x1, x2)) = [-1] + x2
POL(>=(x1, x2)) = [-1]
POL(1) = [1]
Polynomial Interpretations with Context Sensitive Arithemetic Replacement
POL(TermCSAR-Mode @ Context)
POL(%(x1, 2)-1 @ {}) = min{x2, [-1]x2}
POL(%(x1, 2)1 @ {}) = max{x2, [-1]x2}
POL(/(x1, 2)1 @ {332_0_MAIN_EQ_1/0}) = max{x1, [-1]x1} + [-1]
COND_332_0_MAIN_EQ(TRUE, x0[1]) → 332_0_MAIN_EQ(+(x0[1], -1))
COND_332_0_MAIN_EQ1(TRUE, x0[3]) → 332_0_MAIN_EQ(/(x0[3], 2))
332_0_MAIN_EQ(x0[0]) → COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])
COND_332_0_MAIN_EQ(TRUE, x0[1]) → 332_0_MAIN_EQ(+(x0[1], -1))
332_0_MAIN_EQ(x0[2]) → COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])
COND_332_0_MAIN_EQ1(TRUE, x0[3]) → 332_0_MAIN_EQ(/(x0[3], 2))
332_0_MAIN_EQ(x0[0]) → COND_332_0_MAIN_EQ(&&(>(x0[0], 0), !(=(%(x0[0], 2), 0))), x0[0])
332_0_MAIN_EQ(x0[2]) → COND_332_0_MAIN_EQ1(&&(&&(>=(x0[2], 1), !(=(x0[2], 0))), =(0, %(x0[2], 2))), x0[2])
TRUE1 → &&(TRUE, TRUE)1
FALSE1 → &&(TRUE, FALSE)1
FALSE1 → &&(FALSE, TRUE)1
FALSE1 → &&(FALSE, FALSE)1
/1 →
!= | ~ | Neq: (Integer, Integer) -> Boolean |
* | ~ | Mul: (Integer, Integer) -> Integer |
>= | ~ | Ge: (Integer, Integer) -> Boolean |
-1 | ~ | UnaryMinus: (Integer) -> Integer |
| | ~ | Bwor: (Integer, Integer) -> Integer |
/ | ~ | Div: (Integer, Integer) -> Integer |
= | ~ | Eq: (Integer, Integer) -> Boolean |
~ | Bwxor: (Integer, Integer) -> Integer | |
|| | ~ | Lor: (Boolean, Boolean) -> Boolean |
! | ~ | Lnot: (Boolean) -> Boolean |
< | ~ | Lt: (Integer, Integer) -> Boolean |
- | ~ | Sub: (Integer, Integer) -> Integer |
<= | ~ | Le: (Integer, Integer) -> Boolean |
> | ~ | Gt: (Integer, Integer) -> Boolean |
~ | ~ | Bwnot: (Integer) -> Integer |
% | ~ | Mod: (Integer, Integer) -> Integer |
& | ~ | Bwand: (Integer, Integer) -> Integer |
+ | ~ | Add: (Integer, Integer) -> Integer |
&& | ~ | Land: (Boolean, Boolean) -> Boolean |
Boolean, Integer